Applying Counting Techniques To Sudoku

Shelly Smith

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

June 15, 2009

How many ways...?

How many ways can we put the integers 1 through 5 in the spaces below if order matters?

How many ways...?

How many ways can we put the integers 1 through 5 in the spaces below if order matters?

- Permutations
$421 \quad 53$

How many ways...?

How many ways can we put the integers 1 through 5 in the spaces below if order matters?

- Permutations
$421 \quad 5 \quad 3$

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
$$

How many ways...?

How many ways can we put the integers 1 through 5 in the spaces below if order matters?

- Permutations

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
$$

- Permutations with fixed entries
$421 \quad 5 \quad 3$

How many ways...?

How many ways can we put the integers 1 through 5 in the spaces below if order matters?

- Permutations

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
$$

- Permutations with fixed entries
$421 \quad 53$

$$
4!=24
$$

Multiple fixed entries

- Inclusion-Exclusion

2 or 5 are fixed entries

2
or 5

Multiple fixed entries

- Inclusion-Exclusion 2 or 5 are fixed entries
\qquad

$$
\begin{aligned}
|\underline{2} \cup \underline{5}| & =|\underline{2}|+|\underline{5}|-|\underline{2} \cap \underline{5}| \\
& =4!+4!-3! \\
& =42
\end{aligned}
$$

Mixing it all up

A derangement is a permutation with no fixed entries. No digit is in its natural position. $3 \underline{1} 4 \underline{5}$

Mixing it all up

A derangement is a permutation with no fixed entries. No digit is in its natural position. $\quad 3 \quad 1 \quad 4 \quad 5 \quad 2$

Counting derangements is difficult, so we will count permutations with fixed entries and subtract the result from 5!.

Mixing it all up

A derangement is a permutation with no fixed entries. No digit is in its natural position.

$$
31452
$$

Counting derangements is difficult, so we will count permutations with fixed entries and subtract the result from 5!.

$$
\begin{aligned}
5!-|\underline{1} \cup \underline{2} \cup \underline{3} \cup \underline{4} \cup \underline{5}| & =5!-(5 \cdot 4!-10 \cdot 3!+10 \cdot 2!-5 \cdot 1!+1 \cdot 0!) \\
& =120-5 \cdot 24+10 \cdot 6-10 \cdot 2+5 \cdot 1-1 \cdot 1) \\
& =44
\end{aligned}
$$

Permutations with forbidden positions

- Recall our first permutation.

$$
42153
$$

Permutations with forbidden positions

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?

$$
\begin{array}{lllll}
\frac{4}{1} & \frac{2}{4} & \frac{1}{2} & \frac{5}{3} & \frac{3}{5} \\
\hline
\end{array}
$$

Permutations with forbidden positions

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?

$$
\begin{array}{lllll}
\frac{4}{1} & \frac{2}{4} & \frac{1}{2} & \frac{5}{3} & \frac{3}{5} \\
\hline
\end{array}
$$

- This is the same as the number of derangements: 44.

Permutations with forbidden positions

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?
- This is the same as the number of

$$
\begin{array}{lllll}
\frac{4}{1} & \frac{2}{4} & \frac{1}{2} & \frac{5}{3} & \frac{3}{5} \\
3 & 1 & \frac{5}{5} & \frac{2}{4} & \frac{4}{4}
\end{array}
$$ derangements: 44.

- What if we want a third permutation with forbidden positions?

Permutations with forbidden positions

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?
- This is the same as the number of

$$
\begin{array}{lllll}
\frac{4}{1} & \frac{2}{4} & \frac{1}{2} & \frac{5}{3} & \frac{3}{5} \\
\frac{3}{3} & 1 & \frac{1}{5} & 2 & \frac{4}{4}
\end{array}
$$ derangements: 44.

- What if we want a third permutation with forbidden positions?

$$
5!-r_{1} 4!+r_{2} 3!-r_{3} 2!+r_{4} 1!-r_{5} 0!
$$

where r_{i} is the number of ways to place i digits in forbidden positions

Equivalence Relations

A relation R on a set S is a subset of $S \times S$. We say that a is related to $b, a \sim b$, if and only if $(a, b) \in R$.

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Equivalence Relations

A relation R on a set S is a subset of $S \times S$. We say that a is related to $b, a \sim b$, if and only if $(a, b) \in R$.

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S, a \sim a$.

Equivalence Relations

A relation R on a set S is a subset of $S \times S$. We say that a is related to $b, a \sim b$, if and only if $(a, b) \in R$.

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S, a \sim a$.

Symmetric. For all $a, b \in S$, if $a \sim b$, then $b \sim a$.

Equivalence Relations

A relation R on a set S is a subset of $S \times S$. We say that a is related to $b, a \sim b$, if and only if $(a, b) \in R$.

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S, a \sim a$.

Symmetric. For all $a, b \in S$, if $a \sim b$, then $b \sim a$.

Transitive. For all $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

Sudoku terminology

Sudoku

Block

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

Band

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

Stack

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

An Equivalence Relation on Sudoku Boards

Definition

(Russell and Jarvis) Let A and B be two Sudoku boards, then $A \sim B$ if and only if A can be transformed into B using one or more of the following operations:

- Permute the nine digits
- Permute the three stacks
- Permute the three bands
- Permute the three columns within a stack
- Permute the three rows within a band
- Reflect across a diagonal, vertical or horizontal axis
- $0^{\circ}, 90^{\circ}, 180^{\circ}$ or 270° clockwise rotation

Greater/less Sudoku

Greater/less Sudoku

Greater/less Sudoku

Greater/less Sudoku

Big Questions

- How can we create a Greater/less Sudoku puzzle?
- How many Greater/less Sudoku puzzles are there?

Greater/less Sudoku

Starting Small

- Start with one block. There are 9 ! $=362880$ ways to fill in the 9 digits, but only $2^{12}=4096$ ways to choose the 12 inequalities.

Greater/less Sudoku

Starting Small

- Start with one block. There are 9 ! $=362880$ ways to fill in the 9 digits, but only $2^{12}=4096$ ways to choose the 12 inequalities.
- Define an equivalence relation on the set of permutations, on the set on inequalities.

Greater/less Sudoku

Starting Small

- Start with one block.

There are $9!=362880$ ways to fill in the 9 digits, but only $2^{12}=4096$ ways to choose the 12 inequalities.

- Define an equivalence relation on the set of permutations, on the set on inequalities.
- Combine blocks that will satisfy the conditions of Sudoku.

Greater/less Sudoku

Starting Small

- Start with one block.

There are $9!=362880$ ways to fill in the 9 digits, but only $2^{12}=4096$ ways to choose the 12 inequalities.

- Define an equivalence relation on the set of permutations, on the set on inequalities.
- Combine blocks that will satisfy the conditions of Sudoku.
- Start with smaller versions of Greater/less Sudoku.

