Applying Counting Techniques To Sudoku

Shelly Smith

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8		4					3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

June 15, 2009

Shelly Smith Applying Counting TechniquesTo Sudoku

白 ト く ヨ ト く ヨ ト

æ

個 と く ヨ と く ヨ と …

Permutations

<u>4 2 1 5 3</u>

▲□ → ▲ □ → ▲ □ → …

3

Permutations $4 \ 2 \ 1 \ 5 \ 3$ $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

・ 同 ト ・ ヨ ト ・ ヨ ト …

・ 同 ト ・ ヨ ト ・ ヨ ト …

・ 同 ト ・ ヨ ト ・ ヨ ト …

(1日) (日) (日)

3

▶ Inclusion-Exclusion 2 or 5 are fixed entries _______ or ______ 5 $|2 \cup 5| = |2| + |5| - |2 \cap 5|$ = 4! + 4! - 3!= 42

・日本 ・ モン・ ・ モン

æ

A derangement is a permutation with **no** fixed entries. No digit is in its natural position. 3 1 4 5 2

(本部) (本語) (本語) (語)

A derangement is a permutation with **no** fixed entries. No digit is in its natural position. 3 1 4 5 2

Counting derangements is difficult, so we will count permutations with fixed entries and subtract the result from 5!.

・ 回 ト ・ ヨ ト ・ ヨ ト

A derangement is a permutation with **no** fixed entries. No digit is in its natural position. 3 1 4 5 2

Counting derangements is difficult, so we will count permutations with fixed entries and subtract the result from 5!.

$$5! - |\underline{1} \cup \underline{2} \cup \underline{3} \cup \underline{4} \cup \underline{5}| = 5! - (5 \cdot 4! - 10 \cdot 3! + 10 \cdot 2! - 5 \cdot 1! + 1 \cdot 0!)$$

= 120 - 5 \cdot 24 + 10 \cdot 6 - 10 \cdot 2 + 5 \cdot 1 - 1 \cdot 1)
= 44

・ 回 ト ・ ヨ ト ・ ヨ ト

▶ Recall our first permutation.

<u>4 2 1 5 3</u>

個 と く ヨ と く ヨ と …

æ

Shelly Smith Applying Counting TechniquesTo Sudoku

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?

伺 ト イヨト イヨト

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?
- This is the same as the number of derangements: 44.

.

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?
- This is the same as the number of derangements: 44.
- What if we want a third permutation with forbidden positions?

- Recall our first permutation.
- How many permutations don't have any digits in the same position as the first permutation?
- This is the same as the number of derangements: 44.

・ 同 ト ・ ヨ ト ・ ヨ ト

What if we want a third permutation with forbidden positions?

 $5! - r_1 4! + r_2 3! - r_3 2! + r_4 1! - r_5 0!$

where r_i is the number of ways to place *i* digits in forbidden positions

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

向下 イヨト イヨト

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S$, $a \sim a$.

ヨット イヨット イヨッ

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S$, $a \sim a$.

Symmetric. For all $a, b \in S$, if $a \sim b$, then $b \sim a$.

ヨット イヨット イヨッ

A relation R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Reflexive. For all $a \in S$, $a \sim a$.

Symmetric. For all $a, b \in S$, if $a \sim b$, then $b \sim a$.

Transitive. For all $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

伺 とう ヨン うちょう

Sudoku

Block

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

Band

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

Stack

9	5	3	2	1	4	7	6	8
2	7	6	8	5	3	4	1	9
8	1	4	6	7	9	2	3	5
7	4	8	5	3	1	6	9	2
6	9	1	7	4	2	5	8	3
5	3	2	9	6	8	1	7	4
1	6	9	4	8	5	3	2	7
3	2	5	1	9	7	8	4	6
4	8	7	3	2	6	9	5	1

→ 御 → → 注 → → 注 →

æ

Definition

(Russell and Jarvis) Let A and B be two Sudoku boards, then $A \sim B$ if and only if A can be transformed into B using one or more of the following operations:

- Permute the nine digits
- Permute the three stacks
- Permute the three bands
- Permute the three columns within a stack
- Permute the three rows within a band
- Reflect across a diagonal, vertical or horizontal axis
- \blacktriangleright 0°, 90°, 180° or 270° clockwise rotation

• • = • • = •

Greater/less Sudoku

回 と く ヨ と く ヨ と

Э

Greater/less Sudoku

Big Questions

- How can we create a Greater/less Sudoku puzzle?
- How many Greater/less Sudoku puzzles are there?

 Start with one block. There are 9! = 362880 ways to fill in the 9 digits, but only 2¹² = 4096 ways to choose the 12 inequalities.

向下 イヨト イヨト

 Start with one block. There are 9! = 362880 ways to fill in the 9 digits, but only 2¹² = 4096 ways to choose the 12 inequalities.

 Define an equivalence relation on the set of permutations, on the set on inequalities.

- Start with one block. There are 9! = 362880 ways to fill in the 9 digits, but only 2¹² = 4096 ways to choose the 12 inequalities.
- Define an equivalence relation on the set of permutations, on the set on inequalities.
- Combine blocks that will satisfy the conditions of Sudoku.

- Start with one block. There are 9! = 362880 ways to fill in the 9 digits, but only 2¹² = 4096 ways to choose the 12 inequalities.
- Define an equivalence relation on the set of permutations, on the set on inequalities.
- Combine blocks that will satisfy the conditions of Sudoku.
- Start with smaller versions of Greater/less Sudoku.

• • = • • = •